Skip to main content


Homocysteine is a sulphur containing amino acid that is produced during the conversion of methionine to cysteine.

Hyperhomocysteinemia results when there is an abnormality in the homocysteine metabolism.
It is an independent risk factor for stroke, MI, peripheral arterial disease and venous thrombotic disease.

Even mild to moderate hyperhomocysteinemia is a significant risk factor for vascular disease.


The amino acid homocysteine is normally metabolized via the transsulfuration pathway by the enzyme cystathionine-β-synthase (CBS), which requires vitamin B6 as co-factor and via the
remethylation pathway by the enzymes methylenetetrahydrofolate reductase (MTHFR),
which is folate dependent and methionine synthase, which requires vitamin B12 as co-factor.

1 - Methylenetetrahydrofolate reductase
2 - Methionine synthase

Hyperhomocysteinemia can be either:
1) Inherited or
2) Acquired.

Inherited severe hyperhomocysteinemia (plasma level >100 µmol/L), as seen in classic homocystinuria, may result from homozygous MTHFR and CBS deficiencies and more rarely from inherited errors of cobalamin metabolism. Classic symptoms for homozygous patients include premature vascular disease and thrombosis, mental retardation, ectopic lens and skeletal abnormalities.

Inherited mild to moderate hyperhomocysteinemia (plasma level >15 to 100 µmol/L) may result from heterozygous MTHFR and CBS deficiencies, but most commonly results from the thermolabile variant of MTHFR (tlMTHFR) that is encoded by the C677T gene polymorphism. Heterozygous carriers of the tlMTHFR mutation have normal plasma homocysteine levels unless folate levels are

Acquired hyperhomocysteinemia may be caused by folate deficiency, vitamin B 6 or B 12 deficiency, renal insufficiency, hypothyroidism, type II diabetes mellitus, pernicious anemia, inflammatory bowel disease, advanced age, climacteric state, carcinoma (particularly involving breast, ovaries or pancreas) and acute lymphoblastic leukemia, as well as methotrexate, theophylline and phenytoin therapy.

VTE risk is most closely related to elevated fasting plasma homocysteine levels, regardless of etiology. Hyperhomocysteinemia (plasma level >18.5 µmol/L) has been associated with a two- to fourfold increased VTE risk.

The precise mechanisms underlying the thrombogenicity of homocysteine remain unclear. Several diverse mechanisms have been proposed, including endothelial cell desquamation, low-density lipoprotein (LDL) oxidation, promotion of monocyte adhesion to endothelium and factor V activation and promotion of thrombin generation.
Homocysteine also enhances platelet aggregation and adhesiveness as well as turnover, presumably as a result of endothelial cell injury.

Laboratory Diagnosis:
The initial step in the evaluation of the patient with suspected hyperhomocysteinemia involves measurement of fasting total plasma homocysteine (the sum of nonprotein-bound and proteinbound).
A normal value in the nonfasting setting does not normally require repeating.

Standardized methionine loading test
Testing 2 to 8 hours after an oral methionine load (100 mg/kg) increases the sensitivity of detecting occult vitamin B6 deficiency and obligate heterozygotes for CBS deficiency, but methionine loading is not routinely recommended.
Vitamin B12 and folate deficiency do not affect post-methionine loading homocysteine values.
After 4-6 hours the level of homocysteine is measured again.
A level 5 times that of the fasting one or an increase by 40 µmol/L is considered a positive test for hyperhomocysteinemia.
In patients found to have elevated levels of homocysteine, testing for vitamin B12 deficiency is advocated to avoid missing subclinical deficiency before
beginning oral folic acid therapy.

1) Folic acid supplementation is the mainstay therapy. The usual recommended dose is 0.4 to 1.0 mg daily. This causes a 25% decrease in the homocysteine level.
2) Because patients with subclinical vitamin B12 deficiency may be prone to developing
peripheral neuropathy if they receive folic acid supplementation alone, additional treatment with 0.5 mg/day of oral vitamin B12 has been advocated. An additional 7% reduction of homocysteine levels was noted with vitamin B12 supplementation.
Vitamin B12 administration results in normalization of homocysteine levels in B12-deficient individuals. In these patients, a monthly intramuscular injection of 200 to 1,000 µg of vitamin B12 is considered adequate replacement.
3) Vitamin B6 supplementation did not appear to have any effect on homocysteine levels.
4) Thrombotic events in hyperhomocysteinemic patients should be treated accordingly.


Popular posts from this blog

Hypokalemia - Potassium replacement calculation

 DEFINITION  Hypokalemia is defined as a serum potassium level of less than 3.5 mmol/L. Normal level= 3.5-5.5 mmol/L. It is encountered in >20% of patients. Patients are usually asymptomatic but severe arrhythmias and rhabdomyolysis can occur. Non-specific complaints include easy fatiguability and skeletal muscle weakness. The preferred method of replacement is via the oral route but at times this is not possible. The article below will give you an idea about how to calculate the amount of KCl to be given I.V. 1) Potassium deficit in mmol is calculated as given below: K deficit  (mmol) = (K normal lower limit  - K measured ) x kg body weight x 0.4 2) Daily potassium requirement is around 1 mmol/Kg body weight. 3) 13.4 mmol of potassium found in 1 g KCl . ( molecular weight KCl = 39.1 + 35.5 = 74.6) Suppose we get an asymptomatic patient of  70 Kg with a serum potassium level of 3.0 mmol/L and he is on nil by mouth but having an adequate diuresis, w

The plantar reflex - Babinski's sign

The plantar response is an important test to identify an upper motor neuron lesion.  PROCEDURE  To elicit it, the muscles of the lower limbs must be relaxed. The outer edge of the sole of the foot is stimulated by firmly scratching a blunt object like a key or a stick along it from the heel towards the little toe. This is what  Joseph Babinski did in the year 1896. He described the 'great toe sign' that year and then in 1903 the 'toe abduction or fan sign'. Nowadays, a final medial movement across the sole of the metatarsus is also done. i.e. we start at the heel to the little toe and finally arcing to the big toe. The final arcing movement is absent in the original Babinski plantar response test. Babinski sign refers to a combination of 'the great toe sign' and the 'fan sign'.  SIGNIFICANCE  The normal response is plantar flexion of the toes (down going) and they are drawn together. More precisely, there is flexion of the big toe and addu

Differences between hyperemia and congestion

Hyperemia and congestion both indicate a local increased volume of blood in a particular tissue. Hyperemia is an active process that result from augmented blood flow due to arteriolar dilation (e.g. at sites of inflammation or in skeletal muscle during exercise). The affected tissue is redder than normal because of engorgement with oxygenated blood. Congestion, on the other hand, is a passive process resulting from impaired venous return out of a tissue. It may occur due to systemic causes like cardiac failure or a local cause like isolated venous obstruction. The tissue is cyanosed because the worsening congestion leads to accumulation of deoxygenated hemoglobin in the affected tissues. 

Apgar scoring - table, mnemonic

 INTRODUCTION  The  Apgar score  was devised in 1952 by Dr Virginia Apgar (anesthesiologist) as a simple and repeatable method to quickly and summarily assess the health of newborn children immediately after birth.  This helps to identify those requiring resuscitation and can also be used to predict survival in the neonatal period.   MNEMONIC  A mnemonic for learning purposes includes: A - Appearance (skin colour) P - Pulse (heart rate) G - Grimace (reflex irritability) A - Activity (muscle tone) R - Respiration  Another mnemonic is also useful:  How -   Heart rate Ready - Respiration Is -        Irritability This -    Tone Child -   Colour Apgar scoring is divided into 1 and 5-min scores.  1-MIN SCORE    Sixty seconds after complete birth, the five parameters specified in the table above must be evaluated and scored. A total score of 10 indicates that the baby is in the best possible condition. A score between 0-3 me

Endomysium, Perimysium and epimysium - definition, histology

Each muscle fibre is closely surrounded by connective tissue. This acts as a support for the muscle fibres and unites them to each other. 1) Each muscle fibres is surrounded by delicate connective tissue that is called the endomysium . 2) Individual fasciculi are enclosed by a stronger sheath of connective tissue called the perimysium . 3) The entire muscle is surrounded by connective tissue called the epimysium . This is illustrated by the schematic diagram below. 1= perimysium, 2= endomysium, 3= fasciculus. At the junction of a muscle with a tendon, the fibres of the endomysium, the perimysium and the epimysium become continuous with the fibres of the tendon. First published on: 27 December 2016